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Abstract
We propose a single-species aggregation–annihilation model, in which an
aggregation reaction between two clusters produces an active cluster and an
annihilation reaction produces an inert one. By means of the mean-field rate
equation, we respectively investigate the kinetic scaling behaviours of three
distinct systems. The results exhibit that: (i) for the general aggregation–
annihilation system, the size distribution of active clusters consistently
approaches the conventional scaling form; (ii) for the system with the self-
degeneration of the cluster’s activities, it takes the modified scaling form; and
(iii) for the system with the self-closing of active clusters, it does not scale.
Moreover, the size distribution of inert clusters with small size takes a power-
law form, while that of large inert clusters obeys the scaling law. The results
also show that all active clusters will eventually transform into inert ones and the
inert clusters of any size can be produced by such an aggregation–annihilation
process. This model can be used to mimic the chain-shaped cluster growth and
can provide some useful predictions for the kinetic behaviour of the system.

1. Introduction

In the last few decades, considerable researches have been devoted to the nonequilibrium cluster
growth phenomenon [1–17], which is of fundamental interest to the understanding of diverse
natural processes, such as aerosol formation, crystal growth, star formation, droplet growth,
and so on. Most of these works have been focused on the kinetic behaviour of cluster growth
through the binary coalescence mechanism, Ai + A j → Ai+ j , where Ai denotes a cluster
consisting of i monomers [5–13]. This is, the clusters Ai and A j can bond spontaneously
to form a larger cluster Ai+ j . Most intriguingly, such processes have exhibited that the size
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distribution of clusters may approach a scaling form in the long-time limit [8–10]. Additionally,
much effort has also been paid to investigating the kinetics of the basic bimolecular annihilation
reactions, A+ A → 0 [18–21] and A+B → 0 [22–28], which are of great significance in many
basic and applied problems such as the recombination of an electron–hole and annihilation of
localized triplet electronic states of aromatic molecules in rigid solution [29].

Krapivsky was the first to generalize the above-mentioned bimolecular annihilation scheme
to a pairwise annihilation scheme of clusters, Ai+ j + B j → Ai or Ai + Bi+ j → B j ,
and to investigate the competition between the aggregation and annihilation processes of a
two-species system [30]. Ben-Naim and Krapivsky proposed another complete annihilation
scheme, Ai + B j → 0, and then studied the kinetic behaviour of the aggregation processes
with complete annihilation [31]. Recently, the evolution kinetics of aggregation–annihilation
processes has been extensively investigated by the rate equation approach as well as Monte
Carlo simulation [32–35]. In these works, aggregation reactions occur between any two clusters
of the same species and annihilation reactions simultaneously occur between any two clusters
of different species. It is found that such aggregation–annihilation processes give rise to rich
cluster growth kinetics. In most practical situations, it may be sound to establish the above-
mentioned schemes for aggregation and annihilation reactions. However, there also exist
some situations in which both aggregation and annihilation reactions could occur between two
clusters of the same species [36, 37]. For example, in a single-component chemical system
with chain-shaped polymers, two polymers can bond together to form an active open polymer
chain, and meanwhile, the emerging of two clusters can also produce an inert closed chain (i.e.,
a ring). Moreover, the open chains can continue to participate in subsequent reactions, while
the closed chains will withdraw from the reaction system because they lose reactive edges. The
polymerization that produces an open polymer chain can be regarded as an aggregation process,
while that which yields a closed chain is considered as an annihilation process. To the best of
our knowledge, the competition between the aggregation and annihilation processes of such a
single-species system remains unexplored.

In this work, we propose a single-species aggregation–annihilation model, in which two
clusters of type A bond to form a larger active cluster according to the aggregation reaction,

Ai + A j
I1(i; j)−→ Ai+ j , and they emerge to produce a larger inert cluster according to the complete

annihilation reaction, Ai + A j
I2(i; j)−→ 0. Here, I1(i ; j) represents the aggregation rate kernel

and I2(i ; j) the annihilation rate kernel. We believe that this single-species aggregation–
annihilation model may mimic a wide variety of physical and chemical phenomena such as
the above-mentioned example (see, e.g., [16]). It is also believed that our model is of interest
in studying the scaling properties of its own evolution behaviours. Here, we devote ourselves
to investigating the kinetic behaviour of the chain-shaped cluster growth based on the single-
species aggregation–annihilation model. It is found that the size distribution of active clusters
takes a conventional scaling form with nonuniversal scaling exponents, while the evolution
behaviour of inert clusters falls in two distinct kinetic regimes.

This model is studied in the mean-field limit. The mean-field assumption neglects the
spatial fluctuations of the reactant concentrations and, therefore, typically applies to the case
in which the spatial dimension d of the system is equal to or greater than an upper critical
dimension dc. For d < dc, the fluctuations in the spatial distribution of the reactants may give
rise to dimension-dependent kinetics. There are some simulation models for cluster growth
through diffusion-controlled aggregation of clusters, such as the particle coalescence (PC) and
cluster–cluster aggregation (CCA) model [6–8, 11, 12], which can be used to find out the upper
critical dimension. The simulation results have shown that for pure aggregation processes,
dc = 2 [11, 12]. For the pure n-component annihilation processes, the upper critical dimension
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is dc = 4(n − 1)/(2n − 3) [38], which reduces to dc = 2 in the limit n → ∞. Since our model
interpolates between pure aggregation and pure infinite-component annihilation, it is natural to
expect that for our system the upper critical dimension is the same, dc = 2. This assumption
may be confirmed to a certain extent by the fact that for two-species aggregation–annihilation
processes, the upper critical dimension is also dc = 2 [31, 32]. In this work, we assume that
the spatial dimension d of our system is greater than 2 and, therefore, the mean-field approach
can be used to analytically investigate the kinetic behaviour of our model.

The rest of the paper is organized as follows. In section 2, we propose a general single-
species aggregation–annihilation model and then determine the analytical solution of the cluster
size distribution by solving the mean-field rate equation. In section 3, we investigate the kinetics
of the aggregation–annihilation processes with the self-degeneration of the activities of active
clusters. In section 4, we further study the kinetic behaviour of the same reaction processes but
with the self-closing of active clusters. Finally, a brief summary is given in section 5.

2. General single-species aggregation–annihilation processes

At time t , the concentration of the active clusters (or equivalently, open chains) consisting of
k monomers is denoted as ak(t). As we aim to obtain the analytical solution of the time-
dependent concentration ak(t) and then discuss the kinetic evolution of the cluster growth, we
propose here a simple model with constant rate kernels, i.e., I1(i ; j) = I1 and I2(i ; j) = I2

(here I1 and I2 are two nonzero constants). In the mean-field limit, an element reaction
is assumed to proceed at a rate proportional to the concentrations of the reactants. Thus,
the evolution of the concentration ak(t) can be investigated by the rate equation approach.
The generalized Smoluchowski rate equation for this single-species general aggregation–
annihilation model can be written as

dak

dt
= I1

2

∑

i+ j=k

ai a j − I1ak

∞∑

j=1

a j − I2ak

∞∑

j=1

a j . (1)

In equation (1), the first term on the right-hand side accounts for the gain in ak(t) due to the
aggregation reactions between the active clusters Ai and Ak−i (i = 1, 2, . . . , k − 1), and the
second and third terms account for the loss in ak(t) due to the aggregation and annihilation
reactions between the active cluster Ak and any other active clusters.

Introducing the generating function, G(y, t) = ∑∞
j=1 y j a j(t), we recast equation (1) to

∂G

∂ t
= I1

2
G2 − (I1 + I2)M0G, (2)

with the shorthand notation M0(t) = ∑∞
j=1 a j(t). Equation (2) can be solved straightforwardly

to yield

G(y, t) = G0(y)E(t)

1 − G0(y)
∫ t

0
I1
2 E(t ′) dt ′ , (3)

where G0(y) = ∑∞
j=1 y j a j(0) and E(t) = exp[−(I1 + I2)

∫ t
0 M0(t ′) dt ′]. Obviously, we have

G(1, t) = M0(t). When y = 1, equation (2) reduces to

dM0

dt
= −1

2
(I1 + 2I2)M2

0 . (4)

From equation (4) one readily deduces the exact solution of M0(t) as follows:

M0(t) = M0(0)

[
1 + I1 + 2I2

2
M0(0)t

]−1

, (5)

3
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where the constant M0(0) is the initial total number of active clusters. It is found that the total
number M0(t) decays as t−1 at large times. We substitute equation (5) into (3) and then obtain
the general solution of G(y, t) under arbitrary initial conditions,

G(y, t) = G0(y)(1 + C1t)−2(I1+I2 )/(I1+2I2)

1 − G0(y)M−1
0 (0)

[
1 − (1 + C1t)−I1/(I1+2I2)

] , (6)

where C1 = (I1 + 2I2)M0(0)/2.
By expanding equation (6) in powers of y one can then deduce the general solution of ak(t)

for the system with arbitrary initial data. Here, we consider the simplest but important case in
which there only exist monomer clusters at t = 0 and their concentration is equal to A0, i.e.,
ak(0) = A0δk1. Obviously, G0(y) = A0 y and M0(0) = A0. Under the monodisperse initial
condition, we expand the resulting generating function (6) in series and then obtain the exact
solution of the size distribution of active clusters as follows:

ak(t) = A0(1 + C1t)−2(I1+I2)/(I1+2I2)
[
1 − (1 + C1t)−I1/(I1+2I2)

]k−1
. (7)

Equation (7) shows that each ak(t) consistently decays with time and finally decreases to zero.
Hence, for our system no active clusters can survive finally. In the region of k � 1 and t � 1,
equation (7) can be approximately rewritten as

ak(t) � A0(C1t)−2(I1+I2)/(I1+2I2) exp(−x), x = k(C1t)−I1/(I1+2I2), (8)

which approaches the conventional scaling form (see, e.g., [8, 30, 31, 34, 35]),

ak(t) ∼ t−w�[k/S(t)], S(t) ∝ t z . (9)

Here, S(t) is the typical cluster size which plays a role analogous to that of the correlation
length in ordinary critical phenomena, and the exponents (w and z) represent the scaling
properties of the cluster size distribution. In this case, the scaling function is an exponential
form, �(x) = exp(−x), and the governing exponents are nonuniversal constants, w =
2(I1 + I2)/(I1 + 2I2) and z = I1/(I1 + 2I2), which are dependent on the values of the rate
constants.

We then determine the total size of active clusters, M1(t) = ∑∞
j=0 ja j(t) = A0(1 +

C1t)−2I2/(I1+2I2). This indicates that the total size of active clusters decays with time and all the
clusters finally turn out to be inert ones.

It is also instructive to investigate the size distribution of inert clusters (or equivalently,
closed polymer chains) under the above-mentioned monodisperse initial condition. At time t ,
the concentration of inert clusters consisting of k monomers is denoted as bk(t). It is obvious
that b1(t) ≡ 0. Then bk(t) (k > 1) evolves according to the following differential equation:

dbk

dt
= I2

2

∑

i+ j=k

ai a j . (10)

We insert equation (7) into (10) and then obtain

bk(t) = I2

2
A2

0

∫ t

0
dt ′(k − 1)(1 + C1t ′)−4(I1+I2)/(I1+2I2)

[
1 − (1 + C1t ′)−I1/(I1+2I2)

]k−2
. (11)

Equation (11) is directly integrated to yield

bk(t) = C2(1 + C1t)−2(I1+I2)/(I1+2I2)
[
1 − (1 + C1t)−I1/(I1+2I2)

]k−1

+ C3k−1(1 + C1t)−1
[
1 − (1 + C1t)−I1/(I1+2I2)

]k

+ C4k−2(I1+I2)/I1

∫ k

k(1+C1 t)−I1/(I1+2I2 )

dy
(

1 − y

k

)k
y2I2/I1 , (12)

4
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where C2 = I2 A0/I1, C3 = 2I2(I1 + I2)A0/I 2
1 , and C4 = 2I2(I1 + I2)(I1 + 2I2)A0/I 3

1 . In the
region of k � 1 and t � 1, equation (12) can be asymptotically rewritten as

bk(t) � k−2(I1+I2)/I1

[
(C2x + C3)x (I1+2I2)/I1 exp(−x) + C4

∫ k

x
dy

(
1 − y

k

)k
y2I2/I1

]
, (13)

with the scaling variable x = k(C1t)−I1/(I1+2I2). For 1 
 k 
 (C1t)I1/(I1+2I2), the size
distribution bk(t) of inert clusters takes the power-law form,

bk(t) ∼ k−2(I1+I2)/I1 , (14)

which is asymptotically independent of time. For k � (C1t)I1/(I1+2I2), bk(t) approaches the
conventional scaling form (9) as follows:

bk(t) ∼ (C1t)−2(I1+I2)/(I1+2I2) exp(−x), x = k(C1t)−I1/(I1+2I2), (15)

with the scaling exponents w = 2(I1 + I2)/(I1 + 2I2) and z = I1/(I1 + 2I2). The results
indicate that there exists a typical size S(t) = (C1t)I1/(I1+2I2) which divides the above two
distinct evolution regimes of the size distribution of inert clusters. The most interesting result
is that the concentration bk(t) of inert clusters with size k 
 S(t) almost retains a constant
value in the long-time limit. This growth property of inert clusters may be of significance in
some practical chemical processes such as polymerization.

We also analyse the evolution behaviours of the total number and the total size of inert
clusters. Summing up equation (10), one can obtain

dM�

0

dt
= I2

2
M2

0 ,
dM�

1

dt
= I2 M0 M1, (16)

where M�

0(t) = ∑∞
j=2 b j(t) and M�

1(t) = ∑∞
j=2 jb j(t). Equation (16) is readily integrated to

yield

M�

0(t) = I2 A2
0

2C1
[1 − (1 + C1t)−1], M�

1(t) = A0[1 − (1 + C1t)−2I2/(I1+2I2)], (17)

which shows that both the total number and the total size of inert clusters slowly increase with
time. And in the long-time limit, M�

0(t) � I2 A0/(I1 + 2I2) and M�

1(t) � A0.

3. The processes with the self-degeneration of the cluster’s activities

Next, we investigate another cluster growth system, in which, besides the aggregation and
annihilation schemes of active clusters similar to those for the above model, the monomers at
the ends of an active cluster may spontaneously lose their reactive activities due to some factors
and withdraw from the reaction processes, namely, Ak → inert. The self-degeneration rate of
the activities of active clusters is set to be a constant J . Then the governing rate equation for
active clusters reads

dak

dt
= I1

2

∑

i+ j=k

ai a j − I1ak

∞∑

j=1

a j − I2ak

∞∑

j=1

a j − Jak . (18)

In equation (18), the last term on the right-hand side accounts for the loss in ak(t) due to the
activity degeneration of the clusters Ak . Moreover, for a realistic chemical system with dilution,
the loss term −Jak in equation (18) can also represent the dilution of the whole system at a
constant rate.

Summing up equation (18), one can obtain

dM0

dt
= −1

2
(I1 + 2I2)M2

0 − J M0, (19)

5
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which is exactly solved to give

M0(t) = M0(0)e−J t

C6 − C5e−J t
, (20)

where C5 = (I1 + 2I2)M0(0)/2J and C6 = C5 + 1. Moreover, multiplying equation (18) with
k and summing over all k, we obtain

dM1

dt
= −M1(I2 M0 + J ). (21)

From equation (21) we deduce

M1(t) = M1(0)e−J t(C6 − C5e−J t)−2I2/(I1+2I2). (22)

In this system, both the total number and the total size of active clusters decays exponentially
at t � 1, and thus all the active clusters cannot finally survive.

We then determine the size distribution of active clusters. Equation (18) can also be solved
by the method of the generating function. Introducing the generating function, H (y, t) =∑∞

j=1 ykak(t), one can transform equation (18) into

∂ H

∂ t
= I1

2
H 2 − [(I1 + I2)M0 + J ]H. (23)

From equation (23) one then deduces the general solution of H (y, t) under arbitrary initial
conditions,

H (y, t) = H0(y)e−J t(C6 − C5e−J t )−2(I1+I2)/(I1+2I2)

1 − H0(y)M−1
0 (0)

[
1 − (C6 − C5e−J t)−I1/(I1+2I2)

] , (24)

with the shorthand notation H0(y) = ∑∞
j=1 y j a j(0). Here we also consider the case under

the simple monodisperse initial condition, ak(0) = A0δk1. Expanding the resulting generating
function (24) in powers of y, we obtain the exact solution of the size distribution of active
clusters as follows:

ak(t) = A0e−J t(C6 − C5e−J t )−2(I1+I2)/(I1+2I2)
[
1 − (C6 − C5e−J t)−I1/(I1+2I2)

]k−1
. (25)

In the region of k � 1 and t � 1, equation (25) can be approximately rewritten as

ak(t) � A0C−2(I1+I2)/(I1+2I2)

6

[
1 − C−I1/(I1+2I2)

6

]k
e−J t exp(−x), x = C7ke−J t , (26)

where C7 = I1C5C−2(I1+I2)/(I1+2I2)

6 [1−C−I1/(I1+2I2)

6 ]−1/(I1+2I2). Equation (26) indicates that
for this system the conventional scaling description (9) of the cluster size distribution breaks
down and ak(t) approaches the modified scaling form (see, e.g., [30, 34]),

ak(t) ∼ λk[ f (t)]−w�[k/S(t)], S(t) ∝ [ f (t)]z, (27)

where f (t) is an increasing time function and λ is a constant satisfying 0 < λ < 1. In this
case, f (t) = et . The governing exponents are nonuniversal, w = z = J , and the scaling
function is �(x) = exp(−x). Moreover, the modified scaling form (27) also implies that
there are two different scales, the growing scale S(t) ∝ [ f (t)]z and the time-independent
scale S = limt→∞ M2(t)/M1(t) = (1 − λ)−1, that are associated with active clusters. The
growing scale S(t) is driven crucially by the self-degeneration of the cluster’s activities in
the beginning of the reaction processes, but the time-independent scale S will dominate the
evolution behaviour of the system in the long-time limit. For this case, S(t) ∝ et and
S = C I1/(I1+2I2)

6 . Moreover, ak(t) also decays with time and finally vanishes.

6
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We then turn to investigate the size distribution bk(t) of inert clusters under the
monodisperse initial condition. Obviously, the rate equation for inert clusters in this system
is the same as that in the above section. Inserting equation (25) into (10), we obtain

ḃk(t) = I2

2
A2

0(k − 1)e−2J t(C6 − C5e−J t )−4(I1+I2)/(I1+2I2)
[
1 − (C6 − C5e−J t)−I1/(I1+2I2)

]k−2
.

(28)

In the region of k � 1 and t � 1, equation (28) can be integrated to yield the following
asymptotic solution:

bk(t) � k−1
[
1 − C−I1/(I1+2I2)

6

]k
[

I2 A0

I1C7
x + 2I2 J

I 2
1

]
exp(−x), (29)

with the shorthand notation x = C7ke−J t . Equation (29) indicates that the size distribution
of inert clusters satisfies the unusual scaling form, ak(t) ∼ hkk−τ �[k/S(t)], with the
exponentially growing scaling variable S(t) ∝ eJ t . For 1 
 k 
 eJ t , the size distribution
of inert clusters asymptotically takes the form

bk(t) ∼ k−1[1 − C−I1/(I1+2I2)

6 ]k . (30)

For k � eJ t , bk(t) approaches the modified scaling form (27) as follows:

bk(t) ∼ [1 − C−I1/(I1+2I2)

6 ]ke−J t exp[−k/S(t)], (31)

with the growing scale S(t) = C−1
7 eJ t and the time-independent scale S = C I1/(I1+2I2)

6 .
In contrast with the above general aggregation–annihilation processes, the typical size that
divides two distinct evolution regimes of inert clusters is an exponentially increasing function,
S(t) = eJ t . It is also of interest to determine the total number and the total size of inert clusters.
Using equations (20) and (22), we deduce the following exact solutions:

M�

0(t) = C8 − C−1
5 C8 ln F(t) − C8e−J t [F(t)]−1, (32)

M�

1(t) = A0 + 2I −1
1 J − 2I −1

1 J [F(t)]I1/(I1+2I2) − A0e−J t [F(t)]−2I2/(I1+2I2), (33)

where C8 = I2 A2
0/(2JC5) and F(t) = C6 − C5e−J t . At large times, equations (32) and (33)

can be approximately rewritten as M�

0(t) � C8 − C−1
5 C8 ln C6 and M�

1(t) = A0 + 2J/I1 −
2I −1

1 JC I1/(I1+2I2)

6 . These results indicate that the inert clusters of any size can be conserved by
the dynamics of the aggregation–annihilation processes even with cluster consumption.

4. The processes with the self-closing of active clusters

Finally, we propose a somehow actual system, in which two active clusters bond together to
form an active cluster at a constant rate I1 and an inert one at a constant rate I2; meanwhile,
an active cluster whose size is larger than unity spontaneously becomes a ring (i.e., an inert
cluster) with the constant probability J . The corresponding rate equations for this system are

da1

dt
= −I1a1

∞∑

j=1

a j − I2a1

∞∑

j=1

a j , (34)

and

dak

dt
= I1

(
1

2

∑

i+ j=k

ai a j − ak

∞∑

j=1

a j

)
− I2ak

∞∑

j=1

a j − Jak for k > 1. (35)

In equation (35), the last term on the right-hand side accounts for the loss in ak(t) owing to
the self-closing of the active clusters Ak (k > 1). One can easily find out, by comparing

7
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equations (34) and (35) with equation (18), that this model differs from the previous model in
section 3 only in the behaviour of monomers.

Summing up equations (34) and (35), we obtain

da1

dt
= −(I1 + I2)a1M0,

dM0

dt
= −

(
I1

2
+ I2

)
M2

0 − J M0 + Ja1. (36)

From equation (36) one readily obtains the first-order approximation solutions of a1(t) and
M0(t) at large times,

a1(t) � a1(0)

1 + a1(0)(I1 + I2)t
, M0(t) � M0(0)

1 + M0(0)(I1 + I2)t
. (37)

Substituting equation (37) into the differential equation (35) of a2(t), one can then determine
the long-time asymptotical solution

a2(t) � J

2I1

[
I1a1(0)

J + J (I1 + I2)a1(0)t]
]2

. (38)

Further, substituting equations (37) and (38) into equation (35) yields the asymptotical solution
of a3(t) at large times,

a3(t) � J

2I1

[
I1a1(0)

J + J (I1 + I2)a1(0)t]
]3

. (39)

The rest may be deduced by analogy. In the long-time limit, the asymptotical solution of ak(t)
can be expressed as

ak(t) � ck
J

I1

[
I1a1(0)

J + J (I1 + I2)a1(0)t]
]k

, (40)

where ck is a series of constants satisfying ck = (1/2)
∑

i+ j=k ci c j and c1 = 1. Equation (40)
implies that for this case the conventional scaling description of the cluster size distribution
breaks down and ak(t) takes a power-law form. Obviously, ak(t) decreases with time and
vanishes in the limit t → ∞. We then determine the total size of active clusters. Multiplying
equations (34) and (35) with k and summing them up, we obtain

dM1

dt
= −I2 M0 M1 − J M1 + Ja1. (41)

From equation (41) one can derive the first-order approximation solution of M1(t) in the long-
time limit,

M1(t) � (I1 + I2)
−1t−1. (42)

The results show that the total number and the total size of active clusters both decay
consistently with time. Hence, the active clusters will finally be consumed completely.

We then investigate the evolution behaviour of inert clusters. The governing rate equation
for bk(t) (k � 2) reads

dbk

dt
= I2

2

∑

i+ j=k

ai a j + Jak . (43)

Substituting equation (40) into (43) and integrating it, one can determine the large-time
asymptotical solution of bk(t) as follows:

bk(t) � dk(k − 1)−1[I1 J −1a1(0)]k−1 − dk(k − 1)−1[I −1
1 J (I1 + I2)t]−k+1, (44)

8
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where dk = Jck/I1. Further, equation (44) can be rewritten as bk(t) � dk(k −
1)−1[I1 J −1a1(0)]k−1. So, the inert clusters also do not scale according to the scaling law.
Moreover, summing up equation (43), we obtain

dM�

0

dt
= I2

2
M2

0 + J M0 − Ja1,
dM�

1

dt
= I2 M0 M1 + J M1 − Ja1. (45)

Substituting equations (37) and (42) into equation (45), one can readily deduce that M�

0(t) and
M�

1(t) both increase with time and finally reach nonzero constant values. So, the inert clusters
of any size can finally be conserved. The results indicate that the evolution behaviour of the
system is crucially controlled by the self-closing of active clusters.

5. Summary

We have proposed a simple single-species aggregation–annihilation model for chain-shaped
cluster growth, in which the emerging of two clusters can produce either an active cluster or
an inert one. In the mean-field limit, we have investigated the kinetic behaviours of several
different systems with constant rate kernels by employing the rate equation approach. It is
found that the scaling behaviour of the cluster size distribution depends strongly on the details
of the reaction events such as the rate kernels.

For the general aggregation–annihilation system, the size distribution ak(t) of active
clusters approaches the conventional scaling form (9), while the evolution behaviour of the size
distribution bk(t) of inert clusters falls in two distinct kinetic regimes divided by a typical size
S(t) = (C1t)I1/(I1+2I2). For 1 
 k 
 S(t), bk(t) takes a power-law form, while for k � S(t),
bk(t) also scales according to the conventional form (9). Moreover, all active clusters will
eventually transform into inert clusters, and inert clusters of any size can finally be conserved.

For an aggregation–annihilation system with the self-degeneration of the activities of active
clusters, the cluster size distribution ak(t) obeys the modified scaling law (27). The cluster size
distribution bk(t) takes a power-law form for 1 
 k 
 eJ t , while for k � eJ t , it approaches
the modified scaling form (27). In this system, active clusters will also finally be consumed
completely. In contrast with the above system, only a part of active clusters can transform into
inert clusters. Finally, the system consists of all kinds of inert clusters and ‘active’ clusters that
lose reactive activities.

We have also proposed an actual system in which, besides the aggregation and annihilation
reactions, an active cluster may close itself to become an inert ring. It is found that the scaling
description of the size distribution breaks down for both active and inert clusters. The size
distribution of active clusters takes the power-law form, ak(t) ∼ t−k , and that of inert clusters
approaches another power-law form, bk(t) ∼ dk(k − 1)−1[I1 J −1a1(0)]k−1. However, all active
clusters also completely transform finally into inert clusters.

This single-species aggregation–annihilation model may be expected to provide useful
theoretical predictions of the kinetic evolution for some chemical processes, especially for the
polymerization of chain-shaped polymers.
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